Physiological survey of medullary raphe and magnocellular reticular neurons in the anesthetized rat.
نویسندگان
چکیده
The present study was designed to provide a detailed and quantitative description of the physiological characteristics of neurons in the medullary raphe magnus (RM) and adjacent nucleus reticularis magnocellularis (NRMC) under anesthetized conditions. The background discharge and noxious stimulus-evoked responses of RM and NRMC neurons were recorded in rats lightly anesthetized with isoflurane. All cells that were isolated successfully were studied. After recording background discharge, the neuronal response to repeated noxious thermal and noxious mechanical stimulation of the tail was recorded. Most cells were identified as nonserotonergic by their irregular or rapid background discharge pattern. Because the spontaneous discharge of most RM nonserotonergic cells contained pauses and bursts, a comparison between the change in rate evoked by tail heat and the range of rate changes that occur spontaneously was used to classify cells. The mean responses of ON and OFF cells were more than four times the standard deviation of the changes in rate observed spontaneously. ON cells were excited in 86% of the tail heat trials tested. Similarly, OFF cells were inhibited in 97% of the noxious tail heat trials tested. The heat-evoked changes in ON and OFF cell discharge varied over more than two orders of magnitude and were greater in cells with greater rates of background discharge. The heat-evoked responses of and cells had durations of tens of seconds to minutes and were always sustained beyond the visible motor response. Most ON and OFF cells responded to noxious tail clamp in a manner that was similar to their response to noxious heat. More than half of the NEUTRAL cells that were unresponsive to noxious heat were responsive to noxious tail clamp. A minority of ON, OFF, and NEUTRAL cells responded to innocuous brush stimulation with weak, transient responses. Although many cells discharged too infrequently to be classified, units with physiological properties that were different from those described above were rare. In conclusion, most RM and NRMC cells belong to three nonserotonergic physiological cell classes that can be distinguished from each other by the consistency, not the magnitude, of their responses to repeated noxious thermal stimulation. Because most of the heat-evoked change in and cell discharge occurs after the conclusion of the initial motor withdrawal, ON and OFF cells are likely to principally modulate the response to subsequent noxious insults.
منابع مشابه
Effect of Specific Lesion of Non Serotonergic Pathway on Neurons of Nucleus Raphe Magnus Morphology in Rat
Purpose: The nucleus raphe magnus (NRM) is a medullary nucleus containing serotonergic and non serotonergic neurons, both of which densely project to spinal cord. The goal of this study was to determine the role of these non serotonergic neurons in pain perception and their cytological changes after the specific lesion of bulbo-spinal serotonergic pathway. Materials and Methods: Male rats were...
متن کاملContributions of the medullary raphe and ventromedial reticular region to pain modulation and other homeostatic functions.
The raphe magnus is part of an interrelated region of medullary raphe and ventromedial reticular nuclei that project to all areas of the spinal gray. Activation of raphe and reticular neurons evokes modulatory effects in sensory, autonomic, and motor spinal processes. Two physiological types of nonserotonergic cells are observed in the medullary raphe and are thought to modulate spinal pain pro...
متن کاملInhibition of serotonergic medullary raphe obscurus neurons suppresses genioglossus and diaphragm activities in anesthetized but not conscious rats.
Although exogenous serotonin at the hypoglossal motor nucleus (HMN) activates the genioglossus muscle, endogenous serotonin plays a minimal role in modulating genioglossus activity in awake and sleeping rats (Sood S, Morrison JL, Liu H, and Horner RL. Am J Respir Crit Care Med 172: 1338-1347, 2005). This result therefore implies that medullary raphe neurons also play a minimal role in the norma...
متن کاملPhysiological identification of pontomedullary serotonergic neurons in the rat.
Spinal serotonin is derived entirely from bulbar sources and plays an important role in spinal modulatory processes, including pain modulation. Establishing the electrophysiological properties of SEROTONERGIC bulbospinal neurons in the pontomedullary raphe and reticular formation is critical to understanding the physiological role of serotonin in the spinal cord. Neurons were characterized by t...
متن کاملIncreased synaptic activity in magnocellular neurons of supraoptic nucleus and plasma vasopressin levels due to acute administration of morphine in male rats
Introduction: The magnocellular neurons (MCNs) of the supraoptic nucleus (SON) play a crucial role in control of physiological and pathophysiologiccal condition due to two peptides that they synthesize, i.e. Oxytocin (OXT) and Vasopressin (AVP). The activity of MCNs is regulated by a variety of excitatory and inhibitory inputs. Opioid receptors are one of the important receptors in SON synap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 80 4 شماره
صفحات -
تاریخ انتشار 1998